

Machine Learning based fast data processing and autonomous trigger for sPHENIX and EIC detectors

Y. Corrales Morales Los Alamos National Laboratory For the Fast-ML Team

RHIC AUM22 workshop on Accelerating RHIC science with Machine Learning

Physics Motivation

Quantitative improvement in the characterization of the QGP properties by a high precision measurement of rare probes over broad p_t range.

- Heavy flavours (i.e. charm and beauty quarks) are mainly produced in hard-scattering processes in shorter time scales compared to the QGP formation time
- HF probe the entire space-time evolution of the system, losing energy by interacting with the medium constituents via elastic scatterings and gluon radiations

• Properties of in-medium energy loss studied via the nuclear modification factor $R_{\Delta\Delta}$

$$R_{\rm AA} = \frac{1}{\langle N_{\rm coll}^{\rm AA} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}N_{\rm pp}/\mathrm{d}p_{\rm T}}$$

The sPHENIX detector

 Hermetic detector designed to study heavy flavor and jet physics in Heavy Ion Collisions at RHIC:

First run year	2023
$\sqrt{s_{NN}}$ [GeV]	200
Trigger Rate [kHz]	15
Magnetic Field [T]	1.4
$ \eta $	≤ 1.1
$ z_{vtx} $ [cm]	10
N(AuAu) collisions*	1.43x10 ¹¹

^{*} In 3 years of running

Tracking at sPHENIX

- Tracking consists of 3 sub-detectors:
 - Pixel Vertex Detector (MVTX)
 - Intermediate Silicon Tracker (INTT)
 - Time Projection Chamber (TPC)
- MVTX and INTT are both capable of streaming readout
- Combined tracking to r = 10.3 cm

- 27 cm active length/stave
- Pixel detector, 27um x29um

- 47 cm active length/ladder
- Silicon strip detector

sPHENIX HF constraints

- sPHENIX has great tracking and calorimetry
- However, limited by calorimetry backend readout rate (15kHz) in triggered mode
- Low HF production rate (rare events)
- Very high pp rate at RHIC ~10 MHz
 - Charm production rate: ~ 100 kHz
 - 0.5 mb/42 mb ~ 1%
 - Beauty production rate: ~ 500 Hz
 - 2 ub/42mb ~ 0.005%
- No effective trigger to select low p_t HF events
 - Lost most of the HF event at low pt
- Plan: Use tracker SRO to recover some heavy flavor physics potential
 - Huge data volume, DAQ/tape cost

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	$3.7~(5.7)~{ m nb}^{-1}$	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	<i>p</i> ↑+Au	200	_	5	0.003 pb ⁻¹ [5 kHz]	$0.11~{ m pb}^{-1}$
					$0.01~{ m pb}^{-1}~[10\%\mbox{-}str]$	
2025	Au+Au	200	24 (28)	20.5 (24.5)	$13~(15)~{ m nb}^{-1}$	21 (25) nb ⁻¹

- sPHENIX beam-use proposal. 5 kHz refers to final rate with triggered readout
- 10%-str refers to 10% streaming readout

The DOE FOA Call in 2021

- Proposals called on 3/16, 2021
 - Short deadline, 4/30/2021
 - Very intense work

Initial team of NP, HEP and CS

- LANL, MIT, FNAL and NJIT
 - ORNL, CCNU and UNT joined later

DEPARTMENT OF ENERGY
OFFICE OF SCIENCE
NUCLEAR PHYSICS

DATA ANALYTICS FOR AUTONOMOUS OPTIMIZATION AND CONTROL OF ACCELERATORS AND DETECTORS

FUNDING OPPORTUNITY ANNOUNCEMENT (FOA) NUMBER: DE-FOA-0002490

ANNOUNCEMENT TYPE: INITIAL CFDA NUMBER: 81.049

The proposal

Intelligent experiments through real-time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and future EIC detectors

A proposal submitted to the DOE Office of Science April 30, 2021

- Embed AI/ML algorithms on FPGA-based trigger system
 - Low trigger decision latency
- Streaming readout key inner trackers to FPGAs to identify HF events through track topology
 - High efficiency in HF tagging with AI/ML
 - HLS4ML package developed by HEP
- Monitor and update beam-spot and detector alignment in real time
 - Update geometry in real time
- Send HF-trigger signal to the rest of other detectors
 - Initiate readout if not already in the data stream

HF AI Trigger: sPHENIX as a Test Ground

sPHENIX DAQ & Trigger integration challenge

HF AI Trigger: sPHENIX as a Test Ground

The first steps

- Success stories since proposal outcome
- Full Geant4 simulations of MVTX and INTT
- 2. Convert simulation output to equivalent bit pattern
- 3. Tracking GNN algorithms are being developed at NJIT
- Prototype hardware set up at LANL with host-to-client transfers running
- Second lab being set up at MIT
- 6. HLS4ML development at Fermilab and MIT
- 7. FELIX FW development at ORNL and LANL

The next steps

- Aims for the next several months:
- 1. Improve initial tracking and selection algorithms
- With this we can:
- Convert algorithms to HLS code to go on FPGA
- 2. Pass simulated data to FPGA as if it were real data
- Aim to install device in sPHENIX before 2024 (RHIC pp run)

Simulation Hits to Raw Data Bit stream

- sPHENIX physics simulation MVTX and INTT
 - cc, bb and MB samples
- Convert MC hits into "Raw data stream" to AI-Engine
 - MVTX: ~RU output bit-stream
 - INTT: ~ROC output bit-stream
- Feasibility study of high-speed data transfer from FELIX (MVTX, INTT) to AI-Engine at ORNL
 - FELIX loopback tested at 12.8 Gbps (MVTX 3.2Gbps/Link payload), to reduce # of g-links to Al-Engine

Trigger Al Algorithm R&D – NJIT/LANL

- Implemented several models to solve the trigger detection problem:
 - Directly applied GNN model to trigger detection problem (GNN)
 - Added a global vector to the GNN model to represent some global feature (VPGNN)
 - DiffPool model (DiffPool)
 - VpGNN + DiffPool (GNNDiffPool)
 - ParticleNet , Giorgian
- Another model we tried: Set2Graph (Affinity Matrix Prediction)

Inputs:

- raw hits
- tracklets

GNN Fast Tracking at NJIT

- 1. MVTX 3-layer hits
- 2. Clustering
- 3. Track-seeding
- 4. Track-finding
- 5. HF trigger

True associated hits used for initial study;
- Better tracking with MVTX+INTT

Performance - work in progress

Signal:

D -> K + pi

Background:

MB QCD

True_tracklets:

- 1. 90% BG_rej. Sig_eff = 89%
- 2. 99% BG_rej. Sig_eff= 41%

Reco'd tracklets:

- 1. 90% BG rej. Sig eff=61%
- 2. 99% BG rej. Sig eff = 12%

for gt_track with calculated radius

ic| model_mode: 'gt_track' ic| data_mode: 'gt_track'

/home1/tingtingxuan/physics-trigger-graph-level-prediction/train_results/garnet/experiment_2022-03-22_10:43:39/checkpoints/model_chec_100.pth.tar

Successfully reloaded!

Loaded 500000 inference samples

('prec': 0.08458174374243975, 'recall': 0.9139352503519003, 'acc': 0.8902208062303641, 'F1': 0.15483409416093208, 'auroc':

0.9668233993365721}

Trigger: 4973 Non-Trigger: 447007

purity: 9.87% Input 1.0% Trigger Events efficiency: 89.66% drop rate: 90.0% Input 1.0% Trigger Events drop_rate: 95.0% efficiency: 79.99% purity: 17.6% Input 1.0% Trigger Events drop rate: 99.0% efficiency: 41.06% purity: 45.18% Input 1.0% Trigger Events drop rate: 99.33% efficiency: 31.39% purity: 51.79%

for predicted_track with calculated radius:

ic| model_mode: 'predicted_trk'

ic| data_mode: 'predicted_trk'

/home1/tingtingxuan/physics-trigger-graph-level-prediction/train_results/garnet/experiment_2022-03-21_21:17:13/checkpoints/model_chec 100.pth.tar

Successfully reloaded!

Loaded 500000 inference samples

('prec': 0.0388423850859006, 'recall': 0.9033613445378151, 'acc': 0.7592362127343653, 'F1': 0.07448221252587905, 'auroc':

0.8983579838990827}

Trigger: 4998 Non-Trigger: 461048

Input 1.0% Trigger Events drop_rate: 90.0% efficiency: 60.82% purity: 6.52% Input 1.0% Trigger Events efficiency: 39.36% purity: 8.44% drop rate: 95.0% Input 1.0% Trigger Events drop rate: 99.0% efficiency: 12.24% purity: 13.13% Input 1.0% Trigger Events drop rate: 99.33% efficiency: 8.86% purity: 14.26%

Translating Models into FPGA Firmware, FNAL/MIT

- Algorithms must have low latency and resource use
 - 5us latency to decide whether acquire event data in TPC
- hls4ml translates NN algorithms into high level synthesis

https://hls-fpga-machine-learning.github.io/hls4ml/

Also generates IP cores for easy implementation

Red – typical ML algorithm development stages
Blue – HLS conversion to IP

Black – typical implementation onto chips

The Electron-Ion Collider

- Next generation accelerator
 - To be operating at BNL from the early 2030s
 - the future of nucleon structure probes and many other studies
- Three collaborations have submitted detector proposals:
 - 1. ATHENA
 - 2. CORE
 - 3. ECCE (selected)

17

How this fits in

- sPHENIX takes data from 2023
 - Can be used as a proof-of-principle (as well as a real use case)
- EIC has lower average multiplicity, should be relatively easier to select
- Current thoughts are to use similar tracker technology to MVTX (ITS-2 vs ITS-3)
- Large overlap of team between sPHENIX and EIC, knowledge preservation
- They currently share a simulation framework
 - Work can commence immediately
 - Framework may change in future

Predicted timeline

2021

2022

2023

2024

2030+

- Project started
- Initial simulations constructed
- First data for algorithm training

- MVTX & INTT SRO
- Fast tracking algorithms in place
- GPU feedback machine R&D
- Initial FPGA bitstream

- Refine interface between system and detectors
- Improve algorithms with latest data stream
- Precommissioning

- Deploy device at sPHENIX
- pp/pA run
- Design updated system for EIC
- Take
 advantage of
 new
 technology if
 required
- Deploy device at EIC

Conclusions

- We have successfully received funding for FY 22 and 23
- Project will significantly improve sPHENIX HF capabilities
- Project relies on inner tracker SRO
- After successful deployment at sPHENIX, focus shifts to future EIC detectors
- Great progress has already been achieved

Thank you for your attention

BACKUP SLIDES

The Team

- LANL (NP)
 - Yasser Corrales, Cameron Dean, Zhaozhong Shi, Noah Wuerfel, Kun Liu, Cesar da Silva, Hugo Pereira da Costa, Ming Liu ... new PDs
- MIT (NP, HEP)
 - Gunther Roland, Philip Harris (HLS4ML), Yen-Jie Lee, Or Hen, Cristiano Fanelli et al.
- FNAL(HEP)
 - Nhan Tran(HLS4ML), Micol Rigatti/Engineer, Yu-Dai Tsai (Theorist, ML) et al
- NJIT(CS)
 - Dantong Yu, students
- ORNL(NP)
 - Jo Schambach
- CCNU(EE, NP)
 - Kai Chen(FELIX), Yaping Wang, students et al
- UNT (CS)
 - Fu Song, students + PDs

In collaboration with experts from BNL - Jin Huang, Martin Purschke, John Haggerty et al

BACKUP SLIDES

1. Jet Tagger

2. Real Simple Model

3. Real Model

Feed MVTX/INTT MC Hits to AI Engine

Tag Beauty Events in sPHENIX with MVTX + INTT: 3 + 2 layers

A Toy Model – Hardware Implementation

Streaming readout sim data:

8b/10b MVTX/INTT data (KCU105) to FPGA/AI Engine (VC709)

Realizing Toy Model in Hardware/Firmware

- VC709 card shares similar FPGA as FELIX, ideal testing ground
- KC705 represents our MVTX+INTT Data Aggregation Module
 - Replaced with more powerful KCU105
- Successfully transmit data from host PC to DMA/FPGA
 - Convert MVTX sim data to real-datalike bit-stream
 - INTT later
- Next:
 - Transmit MVTX/INTT sim data to VC709(Al-Engine) through G-Links

2nd FELIX TB setup at MIT in progress

MVTX and INTT Event Alignment (I)

MVTX + INTT Event Alignment (II)

INTT 1-RF packet ② select MVTX hits (track fitting)

To form (MVTX_Hits + INTT_Hits) events for AI-Engine

sPHENIX global RF timing (RF counters) used to sync MVTX and INTT packets

- MVTX: @beginning of strobe signal

- INTT: @ a given RF CLK

RHIC cycle: 120 RF budgets: 12.7 uS

Graph Neural Networks

Data Pre-Processing-Clustering

- Particles leave a blob of hits in detectors
- The goal of the clustering algorithm is to reduce the amount of data being processed in the machine learning models, in order to improve inference times
- Connected Components.
- Simple Algorithms, challenging to have fast parallel algorithms on FPGA
 - Grow Clusters by traversing neighbors.
 - Zero-Skipping Architecture to find a neighbors
 - Achieved a latency of 15,000 cycles on average, or 150 us (@ 100MHz clock)
 - Resource utilization of 15%
 - Reduction of data by 85%

 0
 0
 0
 0
 0
 0

 1
 0
 0
 0
 2
 2
 2

 1
 1
 1
 0
 0
 2
 0

 1
 1
 0
 0
 0
 2
 0

 0
 0
 0
 3
 0
 2
 0

 0
 0
 3
 3
 0
 0
 0

 0
 0
 0
 0
 0
 4
 4

Tracking Algorithm

Trigger Detection

- At each layer l, the soft cluster assignment matrix $S^{l} \in R^{n_{l-1} \times n_{l}}$
- $GNN^{l}(A, X) = Relu(\widehat{D}^{-\frac{1}{2}}\widehat{A}\widehat{D}^{-\frac{1}{2}}X W)$
- $S^{l} = Softmax(GNN_{pool}^{l}(A^{l-1}, X^{l-1}))$
- $X^{l} = S^{l^{\top}} (GNN_{diffuse}^{l}(A^{l-1}, X^{l-1}))$
- $\bullet \qquad A^l = S^{l^{\top}} A^{l-1} S^l$
- Trigger = MLP (Readout(X^L))